Hermite Weno Schemes with Lax-wendroff Type Time Discretizations for Hamilton-jacobi Equations
نویسندگان
چکیده
In this paper, we use Hermite weighted essentially non-oscillatory (HWENO) schemes with a Lax-Wendroff time discretization procedure, termed HWENO-LW schemes, to solve Hamilton-Jacobi equations. The idea of the reconstruction in the HWENO schemes comes from the original WENO schemes, however both the function and its first derivative values are evolved in time and are used in the reconstruction. One major advantage of HWENO schemes is its compactness in the reconstruction. We explore the possibility in avoiding the nonlinear weights for part of the procedure, hence reducing the cost but still maintaining non-oscillatory properties for problems with strong discontinuous derivative. As a result, comparing with HWENO with Runge-Kutta time discretizations schemes (HWENO-RK) of Qiu and Shu [19] for Hamilton-Jacobi equations, the major advantages of HWENO-LW schemes are their saving of computational cost and their compactness in the reconstruction. Extensive numerical experiments are performed to illustrate the capability of the method. Mathematics subject classification: 65M06, 65M99, 70H20.
منابع مشابه
Hermite WENO schemes for Hamilton–Jacobi equations
In this paper, a class of weighted essentially non-oscillatory (WENO) schemes based on Hermite polynomials, termed HWENO (Hermite WENO) schemes, for solving Hamilton–Jacobi equations is presented. The idea of the reconstruction in the HWENO schemes comes from the original WENO schemes, however both the function and its first derivative values are evolved in time and used in the reconstruction, ...
متن کاملLocal-Structure-Preserving Discontinuous Galerkin Methods with Lax-Wendroff Type Time Discretizations for Hamilton-Jacobi Equations
In this paper, a family of high order numerical methods are designed to solve the Hamilton-Jacobi equation for the viscosity solution. In particular, the methods start with a hyperbolic conservation law system closely related to the Hamilton-Jacobi equation. The compact one-step one-stage Lax-Wendroff type time discretization is then applied together with the local-structure-preserving disconti...
متن کاملHigh-order central Hermite WENO schemes on staggered meshes for hyperbolic conservation laws
In this paper, we propose a class of high-order schemes for solving oneand two-dimensional hyperbolic conservation laws. The methods are formulated in a central finite volume framework on staggered meshes, and they involve Hermite WENO (HWENO) reconstructions in space, and Lax-Wendroff type discretizations or the natural continuous extension of Runge-Kutta methods in time. Compared with central...
متن کاملFinite volume Hermite WENO schemes for solving the Hamilton-Jacobi equations II: Unstructured meshes
Abstract. In this paper, we present a new type of Hermite weighted essentially nonoscillatory (HWENO) schemes for solving the Hamilton-Jacobi equations on the finite volume framework. The cell averages of the function and its first one (in one dimension) or two (in two dimensions) derivative values are together evolved via time approaching and used in the reconstructions. And the major advantag...
متن کاملWater hammer simulation by explicit central finite difference methods in staggered grids
Four explicit finite difference schemes, including Lax-Friedrichs, Nessyahu-Tadmor, Lax-Wendroff and Lax-Wendroff with a nonlinear filter are applied to solve water hammer equations. The schemes solve the equations in a reservoir-pipe-valve with an instantaneous and gradual closure of the valve boundary. The computational results are compared with those of the method of characteristics (MOC), a...
متن کامل